Tag Archives: china manufacturer bearing

China best Suitable for Volkswagen Touareg Drive Shaft Porsche Cayenne Drive Shaft 7L0521102n 95542102010, a Professional Manufacturer of Drive Shafts Cage Support Bearing

Product Description

OE 7L6521102Q
Vehicle model Volkswagen Touareg Porsche Cayenne 

We are committed to the production and research and development of transmission shafts, as well as the sales of mid to high-end automotive transmission shafts. We serve high-quality customers with high-quality products. At present, we mainly produce Mercedes Benz, BMW, Audi, Volkswagen, Porsche, Volvo, Land Rover, Jaguar, Maserati, Ferrari, Lamborghini, and Bentley
Reasons for choosing us
1. High quality (quieter to move)
2. After sales worry free (one-on-1 service)
3. Factory direct sales (bypassing intermediaries)
4. Support for 1 custom thread
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 12 Months
Color: Black
Certification: ISO
Type: Drive Shaft
Application Brand: Volkswagen
Material: Steel
Samples:
US$ 110/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

Can drive shafts be adapted for use in both automotive and industrial settings?

Yes, drive shafts can be adapted for use in both automotive and industrial settings. While there may be some differences in design and specifications based on the specific application requirements, the fundamental principles and functions of drive shafts remain applicable in both contexts. Here’s a detailed explanation:

1. Power Transmission:

Drive shafts serve the primary purpose of transmitting rotational power from a power source, such as an engine or motor, to driven components, which can be wheels, machinery, or other mechanical systems. This fundamental function applies to both automotive and industrial settings. Whether it’s delivering power to the wheels of a vehicle or transferring torque to industrial machinery, the basic principle of power transmission remains the same for drive shafts in both contexts.

2. Design Considerations:

While there may be variations in design based on specific applications, the core design considerations for drive shafts are similar in both automotive and industrial settings. Factors such as torque requirements, operating speeds, length, and material selection are taken into account in both cases. Automotive drive shafts are typically designed to accommodate the dynamic nature of vehicle operation, including variations in speed, angles, and suspension movement. Industrial drive shafts, on the other hand, may be designed for specific machinery and equipment, taking into consideration factors such as load capacity, operating conditions, and alignment requirements. However, the underlying principles of ensuring proper dimensions, strength, and balance are essential in both automotive and industrial drive shaft designs.

3. Material Selection:

The material selection for drive shafts is influenced by the specific requirements of the application, whether in automotive or industrial settings. In automotive applications, drive shafts are commonly made from materials such as steel or aluminum alloys, chosen for their strength, durability, and ability to withstand varying operating conditions. In industrial settings, drive shafts may be made from a broader range of materials, including steel, stainless steel, or even specialized alloys, depending on factors such as load capacity, corrosion resistance, or temperature tolerance. The material selection is tailored to meet the specific needs of the application while ensuring efficient power transfer and durability.

4. Joint Configurations:

Both automotive and industrial drive shafts may incorporate various joint configurations to accommodate the specific requirements of the application. Universal joints (U-joints) are commonly used in both contexts to allow for angular movement and compensate for misalignment between the drive shaft and driven components. Constant velocity (CV) joints are also utilized, particularly in automotive drive shafts, to maintain a constant velocity of rotation and accommodate varying operating angles. These joint configurations are adapted and optimized based on the specific needs of automotive or industrial applications.

5. Maintenance and Service:

While maintenance practices may vary between automotive and industrial settings, the importance of regular inspection, lubrication, and balancing remains crucial in both cases. Both automotive and industrial drive shafts benefit from periodic maintenance to ensure optimal performance, identify potential issues, and prolong the lifespan of the drive shafts. Lubrication of joints, inspection for wear or damage, and balancing procedures are common maintenance tasks for drive shafts in both automotive and industrial applications.

6. Customization and Adaptation:

Drive shafts can be customized and adapted to meet the specific requirements of various automotive and industrial applications. Manufacturers often offer drive shafts with different lengths, diameters, and joint configurations to accommodate a wide range of vehicles or machinery. This flexibility allows for the adaptation of drive shafts to suit the specific torque, speed, and dimensional requirements of different applications, whether in automotive or industrial settings.

In summary, drive shafts can be adapted for use in both automotive and industrial settings by considering the specific requirements of each application. While there may be variations in design, materials, joint configurations, and maintenance practices, the fundamental principles of power transmission, design considerations, and customization options remain applicable in both contexts. Drive shafts play a crucial role in both automotive and industrial applications, enabling efficient power transfer and reliable operation in a wide range of mechanical systems.

pto shaft

How do drive shafts enhance the performance of automobiles and trucks?

Drive shafts play a significant role in enhancing the performance of automobiles and trucks. They contribute to various aspects of vehicle performance, including power delivery, traction, handling, and overall efficiency. Here’s a detailed explanation of how drive shafts enhance the performance of automobiles and trucks:

1. Power Delivery: Drive shafts are responsible for transmitting power from the engine to the wheels, enabling the vehicle to move forward. By efficiently transferring power without significant losses, drive shafts ensure that the engine’s power is effectively utilized, resulting in improved acceleration and overall performance. Well-designed drive shafts with minimal power loss contribute to the vehicle’s ability to deliver power to the wheels efficiently.

2. Torque Transfer: Drive shafts facilitate the transfer of torque from the engine to the wheels. Torque is the rotational force that drives the vehicle forward. High-quality drive shafts with proper torque conversion capabilities ensure that the torque generated by the engine is effectively transmitted to the wheels. This enhances the vehicle’s ability to accelerate quickly, tow heavy loads, and climb steep gradients, thereby improving overall performance.

3. Traction and Stability: Drive shafts contribute to the traction and stability of automobiles and trucks. They transmit power to the wheels, allowing them to exert force on the road surface. This enables the vehicle to maintain traction, especially during acceleration or when driving on slippery or uneven terrain. The efficient power delivery through the drive shafts enhances the vehicle’s stability by ensuring balanced power distribution to all wheels, improving control and handling.

4. Handling and Maneuverability: Drive shafts have an impact on the handling and maneuverability of vehicles. They help establish a direct connection between the engine and the wheels, allowing for precise control and responsive handling. Well-designed drive shafts with minimal play or backlash contribute to a more direct and immediate response to driver inputs, enhancing the vehicle’s agility and maneuverability.

5. Weight Reduction: Drive shafts can contribute to weight reduction in automobiles and trucks. Lightweight drive shafts made from materials such as aluminum or carbon fiber-reinforced composites reduce the overall weight of the vehicle. The reduced weight improves the power-to-weight ratio, resulting in better acceleration, handling, and fuel efficiency. Additionally, lightweight drive shafts reduce the rotational mass, allowing the engine to rev up more quickly, further enhancing performance.

6. Mechanical Efficiency: Efficient drive shafts minimize energy losses during power transmission. By incorporating features such as high-quality bearings, low-friction seals, and optimized lubrication, drive shafts reduce friction and minimize power losses due to internal resistance. This enhances the mechanical efficiency of the drivetrain system, allowing more power to reach the wheels and improving overall vehicle performance.

7. Performance Upgrades: Drive shaft upgrades can be popular performance enhancements for enthusiasts. Upgraded drive shafts, such as those made from stronger materials or with enhanced torque capacity, can handle higher power outputs from modified engines. These upgrades allow for increased performance, such as improved acceleration, higher top speeds, and better overall driving dynamics.

8. Compatibility with Performance Modifications: Performance modifications, such as engine upgrades, increased power output, or changes to the drivetrain system, often require compatible drive shafts. Drive shafts designed to handle higher torque loads or adapt to modified drivetrain configurations ensure optimal performance and reliability. They enable the vehicle to effectively harness the increased power and torque, resulting in improved performance and responsiveness.

9. Durability and Reliability: Robust and well-maintained drive shafts contribute to the durability and reliability of automobiles and trucks. They are designed to withstand the stresses and loads associated with power transmission. High-quality materials, appropriate balancing, and regular maintenance help ensure that drive shafts operate smoothly, minimizing the risk of failures or performance issues. Reliable drive shafts enhance the overall performance by providing consistent power delivery and minimizing downtime.

10. Compatibility with Advanced Technologies: Drive shafts are evolving in tandem with advancements in vehicle technologies. They are increasingly being integrated with advanced systems such as hybrid powertrains, electric motors, and regenerative braking. Drive shafts designed to work seamlessly with these technologies maximize their efficiency and performance benefits, contributing to improved overall vehicle performance.

In summary, drive shafts enhance the performance of automobiles and trucks by optimizing power delivery, facilitating torque transfer, improving traction and stability, enhancing handling and maneuverability, reducing weight, increasing mechanical efficiency, enabling compatibility with performance upgrades and advanced technologies, and ensuring durability and reliability. They play a crucial role in ensuring efficient power transmission, responsive acceleration, precise handling, and overall improved performance of vehicles.

pto shaft

What is a drive shaft and how does it function in vehicles and machinery?

A drive shaft, also known as a propeller shaft or prop shaft, is a mechanical component that plays a critical role in transmitting rotational power from the engine to the wheels or other driven components in vehicles and machinery. It is commonly used in various types of vehicles, including cars, trucks, motorcycles, and agricultural or industrial machinery. Here’s a detailed explanation of what a drive shaft is and how it functions:

1. Definition and Construction: A drive shaft is a cylindrical metal tube that connects the engine or power source to the wheels or driven components. It is typically made of steel or aluminum and consists of one or more tubular sections with universal joints (U-joints) at each end. These U-joints allow for angular movement and compensation of misalignment between the engine/transmission and the driven wheels or components.

2. Power Transmission: The primary function of a drive shaft is to transmit rotational power from the engine or power source to the wheels or driven components. In vehicles, the drive shaft connects the transmission or gearbox output shaft to the differential, which then transfers power to the wheels. In machinery, the drive shaft transfers power from the engine or motor to various driven components such as pumps, generators, or other mechanical systems.

3. Torque and Speed: The drive shaft is responsible for transmitting both torque and rotational speed. Torque is the rotational force generated by the engine or power source, while rotational speed is the number of revolutions per minute (RPM). The drive shaft must be capable of transmitting the required torque without excessive twisting or bending and maintaining the desired rotational speed for efficient operation of the driven components.

4. Flexible Coupling: The U-joints on the drive shaft provide a flexible coupling that allows for angular movement and compensation of misalignment between the engine/transmission and the driven wheels or components. As the suspension system of a vehicle moves or the machinery operates on uneven terrain, the drive shaft can adjust its length and angle to accommodate these movements, ensuring smooth power transmission and preventing damage to the drivetrain components.

5. Length and Balance: The length of the drive shaft is determined by the distance between the engine or power source and the driven wheels or components. It should be appropriately sized to ensure proper power transmission and avoid excessive vibrations or bending. Additionally, the drive shaft is carefully balanced to minimize vibrations and rotational imbalances, which can cause discomfort, reduce efficiency, and lead to premature wear of drivetrain components.

6. Safety Considerations: Drive shafts in vehicles and machinery require proper safety measures. In vehicles, drive shafts are often enclosed within a protective tube or housing to prevent contact with moving parts and reduce the risk of injury in the event of a malfunction or failure. Additionally, safety shields or guards are commonly installed around exposed drive shafts in machinery to protect operators from potential hazards associated with rotating components.

7. Maintenance and Inspection: Regular maintenance and inspection of drive shafts are essential to ensure their proper functioning and longevity. This includes checking for signs of wear, damage, or excessive play in the U-joints, inspecting the drive shaft for any cracks or deformations, and lubricating the U-joints as recommended by the manufacturer. Proper maintenance helps prevent failures, ensures optimal performance, and prolongs the service life of the drive shaft.

In summary, a drive shaft is a mechanical component that transmits rotational power from the engine or power source to the wheels or driven components in vehicles and machinery. It functions by providing a rigid connection between the engine/transmission and the driven wheels or components, while also allowing for angular movement and compensation of misalignment through the use of U-joints. The drive shaft plays a crucial role in power transmission, torque and speed delivery, flexible coupling, length and balance considerations, safety, and maintenance requirements. Its proper functioning is essential for the smooth and efficient operation of vehicles and machinery.

China best Suitable for Volkswagen Touareg Drive Shaft Porsche Cayenne Drive Shaft 7L0521102n 95542102010, a Professional Manufacturer of Drive Shafts Cage Support Bearing  China best Suitable for Volkswagen Touareg Drive Shaft Porsche Cayenne Drive Shaft 7L0521102n 95542102010, a Professional Manufacturer of Drive Shafts Cage Support Bearing
editor by CX 2024-02-09

China OEM Suitable for Volkswagen Touareg Drive Shaft Porsche Cayenne Drive Shaft 7L0521102n 95542102010, a Professional Manufacturer of Drive Shafts Cage Support Bearing

Product Description

OE 7L6521102Q
Vehicle model Volkswagen Touareg Porsche Cayenne 

We are committed to the production and research and development of transmission shafts, as well as the sales of mid to high-end automotive transmission shafts. We serve high-quality customers with high-quality products. At present, we mainly produce Mercedes Benz, BMW, Audi, Volkswagen, Porsche, Volvo, Land Rover, Jaguar, Maserati, Ferrari, Lamborghini, and Bentley
Reasons for choosing us
1. High quality (quieter to move)
2. After sales worry free (one-on-1 service)
3. Factory direct sales (bypassing intermediaries)
4. Support for 1 custom thread
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 12 Months
Color: Black
Certification: ISO
Type: Drive Shaft
Application Brand: Volkswagen
Material: Steel
Samples:
US$ 110/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

How do manufacturers ensure the compatibility of drive shafts with different equipment?

Manufacturers employ various strategies and processes to ensure the compatibility of drive shafts with different equipment. Compatibility refers to the ability of a drive shaft to effectively integrate and function within a specific piece of equipment or machinery. Manufacturers take into account several factors to ensure compatibility, including dimensional requirements, torque capacity, operating conditions, and specific application needs. Here’s a detailed explanation of how manufacturers ensure the compatibility of drive shafts:

1. Application Analysis:

Manufacturers begin by conducting a thorough analysis of the intended application and equipment requirements. This analysis involves understanding the specific torque and speed demands, operating conditions (such as temperature, vibration levels, and environmental factors), and any unique characteristics or constraints of the equipment. By gaining a comprehensive understanding of the application, manufacturers can tailor the design and specifications of the drive shaft to ensure compatibility.

2. Customization and Design:

Manufacturers often offer customization options to adapt drive shafts to different equipment. This customization involves tailoring the dimensions, materials, joint configurations, and other parameters to match the specific requirements of the equipment. By working closely with the equipment manufacturer or end-user, manufacturers can design drive shafts that align with the equipment’s mechanical interfaces, mounting points, available space, and other constraints. Customization ensures that the drive shaft fits seamlessly into the equipment, promoting compatibility and optimal performance.

3. Torque and Power Capacity:

Drive shaft manufacturers carefully determine the torque and power capacity of their products to ensure compatibility with different equipment. They consider factors such as the maximum torque requirements of the equipment, the expected operating conditions, and the safety margins necessary to withstand transient loads. By engineering drive shafts with appropriate torque ratings and power capacities, manufacturers ensure that the shaft can handle the demands of the equipment without experiencing premature failure or performance issues.

4. Material Selection:

Manufacturers choose materials for drive shafts based on the specific needs of different equipment. Factors such as torque capacity, operating temperature, corrosion resistance, and weight requirements influence material selection. Drive shafts may be made from various materials, including steel, aluminum alloys, or specialized composites, to provide the necessary strength, durability, and performance characteristics. The selected materials ensure compatibility with the equipment’s operating conditions, load requirements, and other environmental factors.

5. Joint Configurations:

Drive shafts incorporate joint configurations, such as universal joints (U-joints) or constant velocity (CV) joints, to accommodate different equipment needs. Manufacturers select and design the appropriate joint configuration based on factors such as operating angles, misalignment tolerances, and the desired level of smooth power transmission. The choice of joint configuration ensures that the drive shaft can effectively transmit power and accommodate the range of motion required by the equipment, promoting compatibility and reliable operation.

6. Quality Control and Testing:

Manufacturers implement stringent quality control processes and testing procedures to verify the compatibility of drive shafts with different equipment. These processes involve conducting dimensional inspections, material testing, torque and stress analysis, and performance testing under simulated operating conditions. By subjecting drive shafts to rigorous quality control measures, manufacturers can ensure that they meet the required specifications and performance criteria, guaranteeing compatibility with the intended equipment.

7. Compliance with Standards:

Manufacturers ensure that their drive shafts comply with relevant industry standards and regulations. Compliance with standards, such as ISO (International Organization for Standardization) or specific industry standards, provides assurance of quality, safety, and compatibility. Adhering to these standards helps manufacturers meet the expectations and requirements of equipment manufacturers and end-users, ensuring that the drive shafts are compatible and can be seamlessly integrated into different equipment.

8. Collaboration and Feedback:

Manufacturers often collaborate closely with equipment manufacturers, OEMs (Original Equipment Manufacturers), or end-users to gather feedback and incorporate their specific requirements into the drive shaft design and manufacturing processes. This collaborative approach ensures that the drive shafts are compatible with the intended equipment and meet the expectations of the end-users. By actively seeking input and feedback, manufacturers can continuously improve their products’ compatibility and performance.

In summary, manufacturers ensure the compatibility of drive shafts with different equipment through a combination of application analysis, customization, torque and power capacity considerations, material selection, joint configurations, quality control and testing, compliance with standards, and collaboration with equipment manufacturers and end-users. These efforts enable manufacturers to design and produce drive shafts that seamlessly integrate with various equipment, ensuring optimal performance, reliability, and compatibility in different applications.

pto shaft

What safety precautions should be followed when working with drive shafts?

Working with drive shafts requires adherence to specific safety precautions to prevent accidents, injuries, and damage to equipment. Drive shafts are critical components of a vehicle or machinery’s driveline system and can pose hazards if not handled properly. Here’s a detailed explanation of the safety precautions that should be followed when working with drive shafts:

1. Personal Protective Equipment (PPE):

Always wear appropriate personal protective equipment when working with drive shafts. This may include safety goggles, gloves, steel-toed boots, and protective clothing. PPE helps protect against potential injuries from flying debris, sharp edges, or accidental contact with moving parts.

2. Lockout/Tagout Procedures:

Before working on a drive shaft, ensure that the power source is properly locked out and tagged out. This involves isolating the power supply, such as shutting off the engine or disconnecting the electrical power, and securing it with a lockout/tagout device. This prevents accidental engagement of the drive shaft while maintenance or repair work is being performed.

3. Vehicle or Equipment Support:

When working with drive shafts in vehicles or equipment, use proper support mechanisms to prevent unexpected movement. Securely block the vehicle’s wheels or utilize support stands to prevent the vehicle from rolling or shifting during drive shaft removal or installation. This helps maintain stability and reduces the risk of accidents.

4. Proper Lifting Techniques:

When handling heavy drive shafts, use proper lifting techniques to prevent strain or injuries. Lift with the help of a suitable lifting device, such as a hoist or jack, and ensure that the load is evenly distributed and securely attached. Avoid lifting heavy drive shafts manually or with improper lifting equipment, as this can lead to accidents and injuries.

5. Inspection and Maintenance:

Prior to working on a drive shaft, thoroughly inspect it for any signs of damage, wear, or misalignment. If any abnormalities are detected, consult a qualified technician or engineer before proceeding. Regular maintenance is also essential to ensure the drive shaft is in good working condition. Follow the manufacturer’s recommended maintenance schedule and procedures to minimize the risk of failures or malfunctions.

6. Proper Tools and Equipment:

Use appropriate tools and equipment specifically designed for working with drive shafts. Improper tools or makeshift solutions can lead to accidents or damage to the drive shaft. Ensure that tools are in good condition, properly sized, and suitable for the task at hand. Follow the manufacturer’s instructions and guidelines when using specialized tools or equipment.

7. Controlled Release of Stored Energy:

Some drive shafts, particularly those with torsional dampers or other energy-storing components, can store energy even when the power source is disconnected. Exercise caution when working on such drive shafts and ensure that the stored energy is safely released before disassembly or removal.

8. Training and Expertise:

Work on drive shafts should only be performed by individuals with the necessary training, knowledge, and expertise. If you are not familiar with drive shafts or lack the required skills, seek assistance from qualified technicians or professionals. Improper handling or installation of drive shafts can lead to accidents, damage, or compromised performance.

9. Follow Manufacturer’s Guidelines:

Always follow the manufacturer’s guidelines, instructions, and warnings specific to the drive shaft you are working with. These guidelines provide important information regarding installation, maintenance, and safety considerations. Deviating from the manufacturer’s recommendations may result in unsafe conditions or void warranty coverage.

10. Disposal of Old or Damaged Drive Shafts:

Dispose of old or damaged drive shafts in accordance with local regulations and environmental guidelines. Improper disposal can have negative environmental impacts and may violate legal requirements. Consult with local waste management authorities or recycling centers to ensure appropriate disposal methods are followed.

By following these safety precautions, individuals can minimize the risks associated with working with drive shafts and promote a safe working environment. It is crucial to prioritize personal safety, use proper equipment and techniques, and seek professional help when needed to ensure the proper handling and maintenance of drive shafts.

pto shaft

Are there variations in drive shaft designs for different types of machinery?

Yes, there are variations in drive shaft designs to cater to the specific requirements of different types of machinery. The design of a drive shaft is influenced by factors such as the application, power transmission needs, space limitations, operating conditions, and the type of driven components. Here’s an explanation of how drive shaft designs can vary for different types of machinery:

1. Automotive Applications:

In the automotive industry, drive shaft designs can vary depending on the vehicle’s configuration. Rear-wheel-drive vehicles typically use a single-piece or two-piece drive shaft, which connects the transmission or transfer case to the rear differential. Front-wheel-drive vehicles often use a different design, employing a drive shaft that combines with the constant velocity (CV) joints to transmit power to the front wheels. All-wheel-drive vehicles may have multiple drive shafts to distribute power to all wheels. The length, diameter, material, and joint types can differ based on the vehicle’s layout and torque requirements.

2. Industrial Machinery:

Drive shaft designs for industrial machinery depend on the specific application and power transmission requirements. In manufacturing machinery, such as conveyors, presses, and rotating equipment, drive shafts are designed to transfer power efficiently within the machine. They may incorporate flexible joints or use a splined or keyed connection to accommodate misalignment or allow for easy disassembly. The dimensions, materials, and reinforcement of the drive shaft are selected based on the torque, speed, and operating conditions of the machinery.

3. Agriculture and Farming:

Agricultural machinery, such as tractors, combines, and harvesters, often requires drive shafts that can handle high torque loads and varying operating angles. These drive shafts are designed to transmit power from the engine to attachments and implements, such as mowers, balers, tillers, and harvesters. They may incorporate telescopic sections to accommodate adjustable lengths, flexible joints to compensate for misalignment during operation, and protective shielding to prevent entanglement with crops or debris.

4. Construction and Heavy Equipment:

Construction and heavy equipment, including excavators, loaders, bulldozers, and cranes, require robust drive shaft designs capable of transmitting power in demanding conditions. These drive shafts often have larger diameters and thicker walls to handle high torque loads. They may incorporate universal joints or CV joints to accommodate operating angles and absorb shocks and vibrations. Drive shafts in this category may also have additional reinforcements to withstand the harsh environments and heavy-duty applications associated with construction and excavation.

5. Marine and Maritime Applications:

Drive shaft designs for marine applications are specifically engineered to withstand the corrosive effects of seawater and the high torque loads encountered in marine propulsion systems. Marine drive shafts are typically made from stainless steel or other corrosion-resistant materials. They may incorporate flexible couplings or dampening devices to reduce vibration and mitigate the effects of misalignment. The design of marine drive shafts also considers factors such as shaft length, diameter, and support bearings to ensure reliable power transmission in marine vessels.

6. Mining and Extraction Equipment:

In the mining industry, drive shafts are used in heavy machinery and equipment such as mining trucks, excavators, and drilling rigs. These drive shafts need to withstand extremely high torque loads and harsh operating conditions. Drive shaft designs for mining applications often feature larger diameters, thicker walls, and specialized materials such as alloy steel or composite materials. They may incorporate universal joints or CV joints to handle operating angles, and they are designed to be resistant to abrasion and wear.

These examples highlight the variations in drive shaft designs for different types of machinery. The design considerations take into account factors such as power requirements, operating conditions, space constraints, alignment needs, and the specific demands of the machinery or industry. By tailoring the drive shaft design to the unique requirements of each application, optimal power transmission efficiency and reliability can be achieved.

China OEM Suitable for Volkswagen Touareg Drive Shaft Porsche Cayenne Drive Shaft 7L0521102n 95542102010, a Professional Manufacturer of Drive Shafts Cage Support Bearing  China OEM Suitable for Volkswagen Touareg Drive Shaft Porsche Cayenne Drive Shaft 7L0521102n 95542102010, a Professional Manufacturer of Drive Shafts Cage Support Bearing
editor by CX 2024-01-04

China Good quality Suitable for Volkswagen Touareg Drive Shaft Porsche Cayenne Drive Shaft 7L0521102n 95542102010, a Professional Manufacturer of Drive Shafts Cage Support Bearing

Product Description

OE 7L6521102Q
Vehicle model Volkswagen Touareg Porsche Cayenne 

We are committed to the production and research and development of transmission shafts, as well as the sales of mid to high-end automotive transmission shafts. We serve high-quality customers with high-quality products. At present, we mainly produce Mercedes Benz, BMW, Audi, Volkswagen, Porsche, Volvo, Land Rover, Jaguar, Maserati, Ferrari, Lamborghini, and Bentley
Reasons for choosing us
1. High quality (quieter to move)
2. After sales worry free (one-on-1 service)
3. Factory direct sales (bypassing intermediaries)
4. Support for 1 custom thread
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 12 Months
Color: Black
Certification: ISO
Type: Drive Shaft
Application Brand: Volkswagen
Material: Steel
Samples:
US$ 110/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

Can drive shafts be adapted for use in both automotive and industrial settings?

Yes, drive shafts can be adapted for use in both automotive and industrial settings. While there may be some differences in design and specifications based on the specific application requirements, the fundamental principles and functions of drive shafts remain applicable in both contexts. Here’s a detailed explanation:

1. Power Transmission:

Drive shafts serve the primary purpose of transmitting rotational power from a power source, such as an engine or motor, to driven components, which can be wheels, machinery, or other mechanical systems. This fundamental function applies to both automotive and industrial settings. Whether it’s delivering power to the wheels of a vehicle or transferring torque to industrial machinery, the basic principle of power transmission remains the same for drive shafts in both contexts.

2. Design Considerations:

While there may be variations in design based on specific applications, the core design considerations for drive shafts are similar in both automotive and industrial settings. Factors such as torque requirements, operating speeds, length, and material selection are taken into account in both cases. Automotive drive shafts are typically designed to accommodate the dynamic nature of vehicle operation, including variations in speed, angles, and suspension movement. Industrial drive shafts, on the other hand, may be designed for specific machinery and equipment, taking into consideration factors such as load capacity, operating conditions, and alignment requirements. However, the underlying principles of ensuring proper dimensions, strength, and balance are essential in both automotive and industrial drive shaft designs.

3. Material Selection:

The material selection for drive shafts is influenced by the specific requirements of the application, whether in automotive or industrial settings. In automotive applications, drive shafts are commonly made from materials such as steel or aluminum alloys, chosen for their strength, durability, and ability to withstand varying operating conditions. In industrial settings, drive shafts may be made from a broader range of materials, including steel, stainless steel, or even specialized alloys, depending on factors such as load capacity, corrosion resistance, or temperature tolerance. The material selection is tailored to meet the specific needs of the application while ensuring efficient power transfer and durability.

4. Joint Configurations:

Both automotive and industrial drive shafts may incorporate various joint configurations to accommodate the specific requirements of the application. Universal joints (U-joints) are commonly used in both contexts to allow for angular movement and compensate for misalignment between the drive shaft and driven components. Constant velocity (CV) joints are also utilized, particularly in automotive drive shafts, to maintain a constant velocity of rotation and accommodate varying operating angles. These joint configurations are adapted and optimized based on the specific needs of automotive or industrial applications.

5. Maintenance and Service:

While maintenance practices may vary between automotive and industrial settings, the importance of regular inspection, lubrication, and balancing remains crucial in both cases. Both automotive and industrial drive shafts benefit from periodic maintenance to ensure optimal performance, identify potential issues, and prolong the lifespan of the drive shafts. Lubrication of joints, inspection for wear or damage, and balancing procedures are common maintenance tasks for drive shafts in both automotive and industrial applications.

6. Customization and Adaptation:

Drive shafts can be customized and adapted to meet the specific requirements of various automotive and industrial applications. Manufacturers often offer drive shafts with different lengths, diameters, and joint configurations to accommodate a wide range of vehicles or machinery. This flexibility allows for the adaptation of drive shafts to suit the specific torque, speed, and dimensional requirements of different applications, whether in automotive or industrial settings.

In summary, drive shafts can be adapted for use in both automotive and industrial settings by considering the specific requirements of each application. While there may be variations in design, materials, joint configurations, and maintenance practices, the fundamental principles of power transmission, design considerations, and customization options remain applicable in both contexts. Drive shafts play a crucial role in both automotive and industrial applications, enabling efficient power transfer and reliable operation in a wide range of mechanical systems.

pto shaft

How do drive shafts enhance the performance of automobiles and trucks?

Drive shafts play a significant role in enhancing the performance of automobiles and trucks. They contribute to various aspects of vehicle performance, including power delivery, traction, handling, and overall efficiency. Here’s a detailed explanation of how drive shafts enhance the performance of automobiles and trucks:

1. Power Delivery:

Drive shafts are responsible for transferring power from the engine to the wheels, enabling the vehicle to move forward. By efficiently transmitting power without significant losses, drive shafts ensure that the engine’s power is effectively utilized, resulting in improved acceleration and overall performance. Well-designed drive shafts with minimal power loss contribute to the vehicle’s ability to deliver power to the wheels efficiently.

2. Torque Transfer:

Drive shafts facilitate the transfer of torque from the engine to the wheels. Torque is the rotational force that drives the vehicle forward. High-quality drive shafts with proper torque conversion capabilities ensure that the torque generated by the engine is effectively transmitted to the wheels. This enhances the vehicle’s ability to accelerate quickly, tow heavy loads, and climb steep gradients, thereby improving overall performance.

3. Traction and Stability:

Drive shafts contribute to the traction and stability of automobiles and trucks. They transmit power to the wheels, allowing them to exert force on the road surface. This enables the vehicle to maintain traction, especially during acceleration or when driving on slippery or uneven terrain. The efficient power delivery through the drive shafts enhances the vehicle’s stability by ensuring balanced power distribution to all wheels, improving control and handling.

4. Handling and Maneuverability:

Drive shafts have an impact on the handling and maneuverability of vehicles. They help establish a direct connection between the engine and the wheels, allowing for precise control and responsive handling. Well-designed drive shafts with minimal play or backlash contribute to a more direct and immediate response to driver inputs, enhancing the vehicle’s agility and maneuverability.

5. Weight Reduction:

Drive shafts can contribute to weight reduction in automobiles and trucks. Lightweight drive shafts made from materials such as aluminum or carbon fiber-reinforced composites reduce the overall weight of the vehicle. The reduced weight improves the power-to-weight ratio, resulting in better acceleration, handling, and fuel efficiency. Additionally, lightweight drive shafts reduce the rotational mass, allowing the engine to rev up more quickly, further enhancing performance.

6. Mechanical Efficiency:

Efficient drive shafts minimize energy losses during power transmission. By incorporating features such as high-quality bearings, low-friction seals, and optimized lubrication, drive shafts reduce friction and minimize power losses due to internal resistance. This enhances the mechanical efficiency of the drivetrain system, allowing more power to reach the wheels and improving overall vehicle performance.

7. Performance Upgrades:

Drive shaft upgrades can be a popular performance enhancement for enthusiasts. Upgraded drive shafts, such as those made from stronger materials or with enhanced torque capacity, can handle higher power outputs from modified engines. These upgrades allow for increased performance, such as improved acceleration, higher top speeds, and better overall driving dynamics.

8. Compatibility with Performance Modifications:

Performance modifications, such as engine upgrades, increased power output, or changes to the drivetrain system, often require compatible drive shafts. Drive shafts designed to handle higher torque loads or adapt to modified drivetrain configurations ensure optimal performance and reliability. They enable the vehicle to effectively harness the increased power and torque, resulting in improved performance and responsiveness.

9. Durability and Reliability:

Robust and well-maintained drive shafts contribute to the durability and reliability of automobiles and trucks. They are designed to withstand the stresses and loads associated with power transmission. High-quality materials, appropriate balancing, and regular maintenance help ensure that drive shafts operate smoothly, minimizing the risk of failures or performance issues. Reliable drive shafts enhance the overall performance by providing consistent power delivery and minimizing downtime.

10. Compatibility with Advanced Technologies:

Drive shafts are evolving in tandem with advancements in vehicle technologies. They are increasingly being integrated with advanced systems such as hybrid powertrains, electric motors, and regenerative braking. Drive shafts designed to work seamlessly with these technologies maximize their efficiency and performance benefits, contributing to improved overall vehicle performance.

In summary, drive shafts enhance the performance of automobiles and trucks by optimizing power delivery, facilitating torque transfer, improving traction and stability, enhancing handling and maneuverability, reducing weight, increasing mechanical efficiency,and enabling compatibility with performance upgrades and advanced technologies. They play a crucial role in ensuring efficient power transmission, responsive acceleration, precise handling, and overall improved performance of vehicles.pto shaft

Are there variations in drive shaft designs for different types of machinery?

Yes, there are variations in drive shaft designs to cater to the specific requirements of different types of machinery. The design of a drive shaft is influenced by factors such as the application, power transmission needs, space limitations, operating conditions, and the type of driven components. Here’s an explanation of how drive shaft designs can vary for different types of machinery:

1. Automotive Applications:

In the automotive industry, drive shaft designs can vary depending on the vehicle’s configuration. Rear-wheel-drive vehicles typically use a single-piece or two-piece drive shaft, which connects the transmission or transfer case to the rear differential. Front-wheel-drive vehicles often use a different design, employing a drive shaft that combines with the constant velocity (CV) joints to transmit power to the front wheels. All-wheel-drive vehicles may have multiple drive shafts to distribute power to all wheels. The length, diameter, material, and joint types can differ based on the vehicle’s layout and torque requirements.

2. Industrial Machinery:

Drive shaft designs for industrial machinery depend on the specific application and power transmission requirements. In manufacturing machinery, such as conveyors, presses, and rotating equipment, drive shafts are designed to transfer power efficiently within the machine. They may incorporate flexible joints or use a splined or keyed connection to accommodate misalignment or allow for easy disassembly. The dimensions, materials, and reinforcement of the drive shaft are selected based on the torque, speed, and operating conditions of the machinery.

3. Agriculture and Farming:

Agricultural machinery, such as tractors, combines, and harvesters, often requires drive shafts that can handle high torque loads and varying operating angles. These drive shafts are designed to transmit power from the engine to attachments and implements, such as mowers, balers, tillers, and harvesters. They may incorporate telescopic sections to accommodate adjustable lengths, flexible joints to compensate for misalignment during operation, and protective shielding to prevent entanglement with crops or debris.

4. Construction and Heavy Equipment:

Construction and heavy equipment, including excavators, loaders, bulldozers, and cranes, require robust drive shaft designs capable of transmitting power in demanding conditions. These drive shafts often have larger diameters and thicker walls to handle high torque loads. They may incorporate universal joints or CV joints to accommodate operating angles and absorb shocks and vibrations. Drive shafts in this category may also have additional reinforcements to withstand the harsh environments and heavy-duty applications associated with construction and excavation.

5. Marine and Maritime Applications:

Drive shaft designs for marine applications are specifically engineered to withstand the corrosive effects of seawater and the high torque loads encountered in marine propulsion systems. Marine drive shafts are typically made from stainless steel or other corrosion-resistant materials. They may incorporate flexible couplings or dampening devices to reduce vibration and mitigate the effects of misalignment. The design of marine drive shafts also considers factors such as shaft length, diameter, and support bearings to ensure reliable power transmission in marine vessels.

6. Mining and Extraction Equipment:

In the mining industry, drive shafts are used in heavy machinery and equipment such as mining trucks, excavators, and drilling rigs. These drive shafts need to withstand extremely high torque loads and harsh operating conditions. Drive shaft designs for mining applications often feature larger diameters, thicker walls, and specialized materials such as alloy steel or composite materials. They may incorporate universal joints or CV joints to handle operating angles, and they are designed to be resistant to abrasion and wear.

These examples highlight the variations in drive shaft designs for different types of machinery. The design considerations take into account factors such as power requirements, operating conditions, space constraints, alignment needs, and the specific demands of the machinery or industry. By tailoring the drive shaft design to the unique requirements of each application, optimal power transmission efficiency and reliability can be achieved.

China Good quality Suitable for Volkswagen Touareg Drive Shaft Porsche Cayenne Drive Shaft 7L0521102n 95542102010, a Professional Manufacturer of Drive Shafts Cage Support Bearing  China Good quality Suitable for Volkswagen Touareg Drive Shaft Porsche Cayenne Drive Shaft 7L0521102n 95542102010, a Professional Manufacturer of Drive Shafts Cage Support Bearing
editor by CX 2023-12-22

China manufacturer Suitable for Volkswagen Touareg Drive Shaft Porsche Cayenne Drive Shaft 7L0521102n 95542102010, a Professional Manufacturer of Drive Shafts Cage Support Bearing

Product Description

OE 7L6521102Q
Vehicle model Volkswagen Touareg Porsche Cayenne 

We are committed to the production and research and development of transmission shafts, as well as the sales of mid to high-end automotive transmission shafts. We serve high-quality customers with high-quality products. At present, we mainly produce Mercedes Benz, BMW, Audi, Volkswagen, Porsche, Volvo, Land Rover, Jaguar, Maserati, Ferrari, Lamborghini, and Bentley
Reasons for choosing us
1. High quality (quieter to move)
2. After sales worry free (one-on-1 service)
3. Factory direct sales (bypassing intermediaries)
4. Support for 1 custom thread

After-sales Service: 12 Months
Color: Black
Certification: ISO
Type: Drive Shaft
Application Brand: Volkswagen
Material: Steel
Samples:
US$ 110/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

How do drive shafts ensure efficient power transfer while maintaining balance?

Drive shafts employ various mechanisms to ensure efficient power transfer while maintaining balance. Efficient power transfer refers to the ability of the drive shaft to transmit rotational power from the source (such as an engine) to the driven components (such as wheels or machinery) with minimal energy loss. Balancing, on the other hand, involves minimizing vibrations and eliminating any uneven distribution of mass that can cause disturbances during operation. Here’s an explanation of how drive shafts achieve both efficient power transfer and balance:

1. Material Selection:

The material selection for drive shafts is crucial for maintaining balance and ensuring efficient power transfer. Drive shafts are commonly made from materials such as steel or aluminum alloys, chosen for their strength, stiffness, and durability. These materials have excellent dimensional stability and can withstand the torque loads encountered during operation. By using high-quality materials, drive shafts can minimize deformation, flexing, and imbalances that could compromise power transmission and generate vibrations.

2. Design Considerations:

The design of the drive shaft plays a significant role in both power transfer efficiency and balance. Drive shafts are engineered to have appropriate dimensions, including diameter and wall thickness, to handle the anticipated torque loads without excessive deflection or vibration. The design also considers factors such as the length of the drive shaft, the number and type of joints (such as universal joints or constant velocity joints), and the use of balancing weights. By carefully designing the drive shaft, manufacturers can achieve optimal power transfer efficiency while minimizing the potential for imbalance-induced vibrations.

3. Balancing Techniques:

Balance is crucial for drive shafts as any imbalance can cause vibrations, noise, and accelerated wear. To maintain balance, drive shafts undergo various balancing techniques during the manufacturing process. Static and dynamic balancing methods are employed to ensure that the mass distribution along the drive shaft is uniform. Static balancing involves adding counterweights at specific locations to offset any weight imbalances. Dynamic balancing is performed by spinning the drive shaft at high speeds and measuring any vibrations. If imbalances are detected, additional adjustments are made to achieve a balanced state. These balancing techniques help minimize vibrations and ensure smooth operation of the drive shaft.

4. Universal Joints and Constant Velocity Joints:

Drive shafts often incorporate universal joints (U-joints) or constant velocity (CV) joints to accommodate misalignment and maintain balance during operation. U-joints are flexible joints that allow for angular movement between shafts. They are typically used in applications where the drive shaft operates at varying angles. CV joints, on the other hand, are designed to maintain a constant velocity of rotation and are commonly used in front-wheel-drive vehicles. By incorporating these joints, drive shafts can compensate for misalignment, reduce stress on the shaft, and minimize vibrations that can negatively impact power transfer efficiency and balance.

5. Maintenance and Inspection:

Regular maintenance and inspection of drive shafts are essential for ensuring efficient power transfer and balance. Periodic checks for wear, damage, or misalignment can help identify any issues that may affect the drive shaft’s performance. Lubrication of the joints and proper tightening of fasteners are also critical for maintaining optimal operation. By adhering to recommended maintenance procedures, any imbalances or inefficiencies can be addressed promptly, ensuring continued efficient power transfer and balance.

In summary, drive shafts ensure efficient power transfer while maintaining balance through careful material selection, thoughtful design considerations, balancing techniques, and the incorporation of flexible joints. By optimizing these factors, drive shafts can transmit rotational power smoothly and reliably, minimizing energy losses and vibrations that can impact performance and longevity.

pto shaft

What safety precautions should be followed when working with drive shafts?

Working with drive shafts requires adherence to specific safety precautions to prevent accidents, injuries, and damage to equipment. Drive shafts are critical components of a vehicle or machinery’s driveline system and can pose hazards if not handled properly. Here’s a detailed explanation of the safety precautions that should be followed when working with drive shafts:

1. Personal Protective Equipment (PPE):

Always wear appropriate personal protective equipment when working with drive shafts. This may include safety goggles, gloves, steel-toed boots, and protective clothing. PPE helps protect against potential injuries from flying debris, sharp edges, or accidental contact with moving parts.

2. Lockout/Tagout Procedures:

Before working on a drive shaft, ensure that the power source is properly locked out and tagged out. This involves isolating the power supply, such as shutting off the engine or disconnecting the electrical power, and securing it with a lockout/tagout device. This prevents accidental engagement of the drive shaft while maintenance or repair work is being performed.

3. Vehicle or Equipment Support:

When working with drive shafts in vehicles or equipment, use proper support mechanisms to prevent unexpected movement. Securely block the vehicle’s wheels or utilize support stands to prevent the vehicle from rolling or shifting during drive shaft removal or installation. This helps maintain stability and reduces the risk of accidents.

4. Proper Lifting Techniques:

When handling heavy drive shafts, use proper lifting techniques to prevent strain or injuries. Lift with the help of a suitable lifting device, such as a hoist or jack, and ensure that the load is evenly distributed and securely attached. Avoid lifting heavy drive shafts manually or with improper lifting equipment, as this can lead to accidents and injuries.

5. Inspection and Maintenance:

Prior to working on a drive shaft, thoroughly inspect it for any signs of damage, wear, or misalignment. If any abnormalities are detected, consult a qualified technician or engineer before proceeding. Regular maintenance is also essential to ensure the drive shaft is in good working condition. Follow the manufacturer’s recommended maintenance schedule and procedures to minimize the risk of failures or malfunctions.

6. Proper Tools and Equipment:

Use appropriate tools and equipment specifically designed for working with drive shafts. Improper tools or makeshift solutions can lead to accidents or damage to the drive shaft. Ensure that tools are in good condition, properly sized, and suitable for the task at hand. Follow the manufacturer’s instructions and guidelines when using specialized tools or equipment.

7. Controlled Release of Stored Energy:

Some drive shafts, particularly those with torsional dampers or other energy-storing components, can store energy even when the power source is disconnected. Exercise caution when working on such drive shafts and ensure that the stored energy is safely released before disassembly or removal.

8. Training and Expertise:

Work on drive shafts should only be performed by individuals with the necessary training, knowledge, and expertise. If you are not familiar with drive shafts or lack the required skills, seek assistance from qualified technicians or professionals. Improper handling or installation of drive shafts can lead to accidents, damage, or compromised performance.

9. Follow Manufacturer’s Guidelines:

Always follow the manufacturer’s guidelines, instructions, and warnings specific to the drive shaft you are working with. These guidelines provide important information regarding installation, maintenance, and safety considerations. Deviating from the manufacturer’s recommendations may result in unsafe conditions or void warranty coverage.

10. Disposal of Old or Damaged Drive Shafts:

Dispose of old or damaged drive shafts in accordance with local regulations and environmental guidelines. Improper disposal can have negative environmental impacts and may violate legal requirements. Consult with local waste management authorities or recycling centers to ensure appropriate disposal methods are followed.

By following these safety precautions, individuals can minimize the risks associated with working with drive shafts and promote a safe working environment. It is crucial to prioritize personal safety, use proper equipment and techniques, and seek professional help when needed to ensure the proper handling and maintenance of drive shafts.

pto shaft

What benefits do drive shafts offer for different types of vehicles and equipment?

Drive shafts offer several benefits for different types of vehicles and equipment. They play a crucial role in power transmission and contribute to the overall performance, efficiency, and functionality of various systems. Here’s a detailed explanation of the benefits that drive shafts provide:

1. Efficient Power Transmission:

Drive shafts enable efficient power transmission from the engine or power source to the wheels or driven components. By connecting the engine or motor to the driven system, drive shafts efficiently transfer rotational power, allowing vehicles and equipment to perform their intended functions. This efficient power transmission ensures that the power generated by the engine is effectively utilized, optimizing the overall performance and productivity of the system.

2. Versatility:

Drive shafts offer versatility in their applications. They are used in various types of vehicles, including cars, trucks, motorcycles, and off-road vehicles. Additionally, drive shafts are employed in a wide range of equipment and machinery, such as agricultural machinery, construction equipment, industrial machinery, and marine vessels. The ability to adapt to different types of vehicles and equipment makes drive shafts a versatile component for power transmission.

3. Torque Handling:

Drive shafts are designed to handle high levels of torque. Torque is the rotational force generated by the engine or power source. Drive shafts are engineered to efficiently transmit this torque without excessive twisting or bending. By effectively handling torque, drive shafts ensure that the power generated by the engine is reliably transferred to the wheels or driven components, enabling vehicles and equipment to overcome resistance, such as heavy loads or challenging terrains.

4. Flexibility and Compensation:

Drive shafts provide flexibility and compensation for angular movement and misalignment. In vehicles, drive shafts accommodate the movement of the suspension system, allowing the wheels to move up and down independently. This flexibility ensures a constant power transfer even when the vehicle encounters uneven terrain. Similarly, in machinery, drive shafts compensate for misalignment between the engine or motor and the driven components, ensuring smooth power transmission and preventing excessive stress on the drivetrain.

5. Weight Reduction:

Drive shafts contribute to weight reduction in vehicles and equipment. Compared to other forms of power transmission, such as belt drives or chain drives, drive shafts are typically lighter in weight. This reduction in weight helps improve fuel efficiency in vehicles and reduces the overall weight of equipment, leading to enhanced maneuverability and increased payload capacity. Additionally, lighter drive shafts contribute to a better power-to-weight ratio, resulting in improved performance and acceleration.

6. Durability and Longevity:

Drive shafts are designed to be durable and long-lasting. They are constructed using materials such as steel or aluminum, which offer high strength and resistance to wear and fatigue. Drive shafts undergo rigorous testing and quality control measures to ensure their reliability and longevity. Proper maintenance, including lubrication and regular inspections, further enhances their durability. The robust construction and long lifespan of drive shafts contribute to the overall reliability and cost-effectiveness of vehicles and equipment.

7. Safety:

Drive shafts incorporate safety features to protect operators and bystanders. In vehicles, drive shafts are often enclosed within a protective tube or housing, preventing contact with moving parts and reducing the risk of injury in the event of a failure. Similarly, in machinery, safety shields or guards are commonly installed around exposed drive shafts to minimize the potential hazards associated with rotating components. These safety measures ensure the well-being of individuals operating or working in proximity to vehicles and equipment.

In summary, drive shafts offer several benefits for different types of vehicles and equipment. They enable efficient power transmission, provide versatility in various applications, handle torque effectively, offer flexibility and compensation, contribute to weight reduction, ensure durability and longevity, and incorporate safety features. By providing these advantages, drive shafts enhance the performance, efficiency, reliability, and safety of vehicles and equipment across a wide range of industries.

China manufacturer Suitable for Volkswagen Touareg Drive Shaft Porsche Cayenne Drive Shaft 7L0521102n 95542102010, a Professional Manufacturer of Drive Shafts Cage Support Bearing  China manufacturer Suitable for Volkswagen Touareg Drive Shaft Porsche Cayenne Drive Shaft 7L0521102n 95542102010, a Professional Manufacturer of Drive Shafts Cage Support Bearing
editor by CX 2023-12-13

China high quality automotive parts wheel bearing hub wheel hub bearing rear wheel bearing transmission shaft50563996 for Alfa Romeo Stelvio949 manufacturer

Design: StelvioTi, STELVIO (949_), STELVIO SUV (949_), StelvioQuadrifoglio, STELVIO, STELVIO (949_)
Yr: 2017-2018, 2018-2019, 2017-2019, 2018-, 2016-, 2018-, 2019-
Car Fitment: ALFA ROMEO
Product Quantity: ZD5596
Car Make: FOR ALFA ROMEO
OE NO.: 557196
Warranty: 18 Months
Solution Identify: transmission shaft
Software: Transmission Program
Kind: Front Suspension Subframe Axle
Vehicle Product: 4 Wheels Automobile
Name: transmission shaft
Materials: Steel
Search term: transmission shaft
Axle sort: Front push shaft of four-wheel travel technique
Braking Kind: Disc
MOQ: 1 Personal computer
Packaging Particulars: Carton Box

Product NameAutomobile half axle
Model No.Giulia/Stelvio
Place of originZheJiang , China
QualityTop Quality
Solution Present Firm Profile Packing & Supply FAQ one.What is your benefit?A: CZPT business with competitive cost and skilled provider on export procedure.2. How I imagine you?A : We consider CZPT as the life of our business, we can tell you the get in touch with info of our some other clients for you to verify our credit history. Aside from, there is trade assurance from Alibaba, your buy and funds will be nicely guaranteed.3.Can you give warranty of your products?A: Sure, we increase a 100% satisfaction guarantee on all products. Make sure you really feel free to comments instantly if you are not pleased with our top quality or provider.4.The place are you? Can I visit you?A: Positive,welcome to you go to our factory at any time.

How to tell if your driveshaft needs replacing

What is the cause of the unbalanced drive shaft? Unstable U-joint? Your car may make clicking noises while driving. If you can hear it from both sides, it might be time to hand it over to the mechanic. If you’re not sure, read on to learn more. Fortunately, there are many ways to tell if your driveshaft needs replacing.

unbalanced

An unbalanced driveshaft can be the source of strange noises and vibrations in your vehicle. To fix this problem, you should contact a professional. You can try a number of things to fix it, including welding and adjusting the weight. The following are the most common methods. In addition to the methods above, you can use standardized weights to balance the driveshaft. These standardized weights are attached to the shaft by welders.
An unbalanced drive shaft typically produces lateral vibrations per revolution. This type of vibration is usually caused by a damaged shaft, missing counterweights, or a foreign object stuck on the drive shaft. On the other hand, torsional vibrations occur twice per revolution, and they are caused by shaft phase shifts. Finally, critical speed vibration occurs when the RPM of the drive shaft exceeds its rated capacity. If you suspect a driveshaft problem, check the following:
Manually adjusting the imbalance of a drive shaft is not the easiest task. To avoid the difficulty of manual balancing, you can choose to use standardized weights. These weights are fixed on the outer circumference of the drive shaft. The operator can manually position the weight on the shaft with special tools, or use a robot. However, manual balancers have many disadvantages.
air-compressor

unstable

When the angular velocity of the output shaft is not constant, it is unstable. The angular velocity of the output shaft is 0.004 at ph = 29.5 and 1.9 at t = 1.9. The angular velocity of the intermediate shaft is not a problem. But when it’s unstable, the torque applied to it is too much for the machine. It might be a good idea to check the tension on the shaft.
An unstable drive shaft can cause a lot of noise and mechanical vibration. It can lead to premature shaft fatigue failure. CZPT studies the effect of shaft vibration on the rotor bearing system. They investigated the effect of flex coupling misalignment on the vibration of the rotor bearing system. They assume that the vibrational response has two components: x and y. However, this approach has limited application in many situations.
Experimental results show that the presence of cracks in the output shaft may mask the unbalanced excitation characteristics. For example, the presence of superharmonic peaks on the spectrum is characteristic of cracks. The presence of cracks in the output shaft masks unbalanced excitation characteristics that cannot be detected in the transient response of the input shaft. Figure 8 shows that the frequency of the rotor increases at critical speed and decreases as the shaft passes the natural frequency.

Unreliable

If you’re having trouble driving your car, chances are you’ve run into an unreliable driveshaft. This type of drivetrain can cause the wheels to stick or not turn at all, and also limit the overall control of the car. Whatever the reason, these issues should be resolved as soon as possible. Here are some symptoms to look for when diagnosing a driveshaft fault. Let’s take a closer look.
The first symptom you may notice is an unreliable drive shaft. You may feel vibrations, or hear noises under the vehicle. Depending on the cause, it could be a broken joint or a broken shaft. The good news is that driveshaft repairs are generally relatively inexpensive and take less time than a complete drivetrain replacement. If you’re not sure what to do, CZPT has a guide to replacing the U-connector.
One of the most common signs of an unreliable driveshaft is clanging and vibration. These sounds can be caused by worn bushings, loose U-joints, or damaged center bearings. This can cause severe vibration and noise. You can also feel these vibrations through the steering wheel or the floor. An unreliable driveshaft is a symptom of a bigger problem.
air-compressor

Unreliable U-joints

A car with an unreliable U-joint on the drive shaft can be dangerous. A bad u-joint can prevent the vehicle from driving properly and may even cause you trouble. Unreliable u-joints are cheap to replace and you should try getting parts from quality manufacturers. Unreliable U-joints can cause the car to vibrate in the chassis or gear lever. This is a sure sign that your car has been neglected in maintenance.
Replacing a U-joint is not a complicated task, but it requires special tools and a lot of elbow grease. If you don’t have the right tools, or you’re unfamiliar with mechanical terminology, it’s best to seek the help of a mechanic. A professional mechanic will be able to accurately assess the problem and propose an appropriate solution. But if you don’t feel confident enough, you can replace your own U-connector by following a few simple steps.
To ensure the vehicle’s driveshaft is not damaged, check the U-joint for wear and lubrication. If the U-joint is worn, the metal parts are likely to rub against each other, causing wear. The sooner a problem is diagnosed, the faster it can be resolved. Also, the longer you wait, the more you lose on repairs.

damaged drive shaft

The driveshaft is the part of the vehicle that connects the wheels. If the driveshaft is damaged, the wheels may stop turning and the vehicle may slow down or stop moving completely. It bears the weight of the car itself as well as the load on the road. So even a slight bend or break in the drive shaft can have dire consequences. Even a piece of loose metal can become a lethal missile if dropped from a vehicle.
If you hear a screeching noise or growl from your vehicle when shifting gears, your driveshaft may be damaged. When this happens, damage to the u-joint and excessive slack in the drive shaft can result. These conditions can further damage the drivetrain, including the front half. You should replace the driveshaft as soon as you notice any symptoms. After replacing the driveshaft, you can start looking for signs of wear.
A knocking sound is a sign of damage to the drive shaft. If you hear this sound while driving, it may be due to worn couplings, damaged propshaft bearings, or damaged U-joints. In some cases, the knocking noise can even be caused by a damaged U-joint. When this happens, you may need to replace the entire driveshaft, requiring a new one.
air-compressor

Maintenance fees

The cost of repairing a driveshaft varies widely, depending on the type and cause of the problem. A new driveshaft costs between $300 and $1,300, including labor. Repairing a damaged driveshaft can cost anywhere from $200 to $300, depending on the time required and the type of parts required. Symptoms of a damaged driveshaft include unresponsiveness, vibration, chassis noise and a stationary car.
The first thing to consider when estimating the cost of repairing a driveshaft is the type of vehicle you have. Some vehicles have more than one, and the parts used to make them may not be compatible with other cars. Even if the same car has two driveshafts, the damaged ones will cost more. Fortunately, many auto repair shops offer free quotes to repair damaged driveshafts, but be aware that such work can be complicated and expensive.

China high quality automotive parts wheel bearing hub wheel hub bearing rear wheel bearing transmission shaft50563996 for Alfa Romeo Stelvio949     manufacturer China high quality automotive parts wheel bearing hub wheel hub bearing rear wheel bearing transmission shaft50563996 for Alfa Romeo Stelvio949     manufacturer
editor by czh

Chinese near me made in China – replacement parts – in Douai-Lens France Manufacturer Clutch Release Bearing 510007310 71747899 93317724 for Opel Vauxhall Suzuki with top quality

Chinese  near me  made in China - replacement parts -  in Douai-Lens France  Manufacturer Clutch Release Bearing 510007310 71747899 93317724 for Opel Vauxhall Suzuki with top quality

We – EPG Team the bigge EPT gearbox & motors , vee pulleys, timing pulleys, couplings and gears manufacturing facility in China with 5 different branches. For much more details: Cell/whatsapp/telegram/Kakao us at: 0086~13083988828 13858117778 0571 88828

EPT Clutch launch bearing ,release bearings  supplier In China
 

Items Deati EPT :

EPT No. 5105710 71747899 93317724
Auto Design  
Components Very Top quality bearing metal substantial quality grease lubricant
Payment western union ,T/T. You can shell out 30% deposit fir EPT and the stability mu EPT be paid before the shipping and delivery .
packing element 1. EPT Packing

2.SAJ Colour packing or EPT packing

three As clients ask for.
deliever time in 15days following getting the 30% deposit. apart from customs parts
Remark we can accept a trial purchase of small amount.
 

Products Images :

 

Our Main goods
1.CHASSIS Parts Bearings Clutch Launch Bearings
Tensioner Bearings/Pivot shaft
wheel bearings
Wheel Hub Models
Suspension Areas Shock Absorber
common Joint/ universal Joint
50 % Shaft
Steering areas Steering Pump
Steering Equipment
     
two.Electric powered Parts  Ignition systems ignition coils
ignition wire set
Spark Plug
Exhau EPT technique Exhau EPT fuel recirculation handle valve
EGR(exhau EPT fuel recirculation)valve
Air  circulation meter
Digital fuel injection system parts Oxygen sensor
Electrical throttle place sensor
Fuel Pump
gas injector Nozzle
air movement sensor
Crankshaft situation sensor
Camshaft place sensor
Idle speed switch 
Detonation sensor
fuel Pressure sensor
Enthusiast resistance

About our business:
 

     HangZhou Sujun EPT is a integrated team of automotive spare components in analysis ,layout  manufacture and    marketing .Products Contain clutch release bearing & hydraulic release bearings,belt tensioner & pulley wheel bearings ,hub unit s,tapered roller bearings, and automotive electric powered areas(ingition coi EPT ,ignition weir sets, sensioners , gasoline injection and so on ) and EPT sereis car spare areas.            
We have been committed to the idea of “professional, integrity, innovation, service” Item ideal-selling Europe and the United States, the Middle East, southea EPT Asia and EPT international locations and areas.       
With the wealthy experience , innovative    technology  and strict administration we gained the domestic and overseas clients steady higher praise.      
we are willing to establish a long-term cooperative relationship with cstomers from all in excess of the globe with the  principle  as “excellent high quality , efficency  integrity, get-earn”.             

ought to you have any questions p EPT do not hesitate to speak to us

 

We – EPG Group the bigge EPT gearbox & motors , vee pulleys, timing pulleys, couplings and gears manufacturing unit in China with 5 various branches. For a lot more information: Cell/whatsapp/telegram/Kakao us at: 0086~13083988828 13858117778 0571 88828 The use of original products manufacturer’s (OEM) portion figures or emblems , e.g. CASE® and John Deere® are for reference reasons only and for indicating item use and compatibility. Our firm and the shown substitute parts contained herein are not sponsored, accepted, or manufactured by the OEM.

Chinese  near me  made in China - replacement parts -  in Douai-Lens France  Manufacturer Clutch Release Bearing 510007310 71747899 93317724 for Opel Vauxhall Suzuki with top quality

Chinese  near me  made in China - replacement parts -  in Douai-Lens France  Manufacturer Clutch Release Bearing 510007310 71747899 93317724 for Opel Vauxhall Suzuki with top quality

Best China manufacturer & factory china in Santiago Chile supplier 6148 Long life deep groove ball bearing 6144 6148 6156 6160 6164 With high quality best price

Best China manufacturer & factory china  in Santiago Chile  supplier 6148 Long life deep groove ball bearing 6144 6148 6156 6160 6164 With high quality best price

Ever-Electrical power Group CO., LTD. IS Expert IN Creating ALL Kinds OF MECHANICAL TRANSMISSION AND HYDRAULIC TRANSMISSION LIKE: PLANETARY GEARBOXES, WORM REDUCERS, IN-LINE HELICAL Equipment Speed REDUCERS, PARALLEL SHAFT HELICAL Gear REDUCERS, HELICAL BEVEL REDUCERS, HELICAL WORM Equipment REDUCERS, AGRICULTURAL GEARBOXES, TRACTOR GEARBOXES, Car GEARBOXES, PTO Travel SHAFTS, Particular REDUCER & Related Equipment Elements AND OTHER Connected Items, SPROCKETS, HYDRAULIC Method, VACCUM PUMPS, FLUID COUPLING, Gear RACKS, CHAINS, TIMING PULLEYS, UDL Speed VARIATORS, V PULLEYS, HYDRAULIC CYLINDER, Equipment PUMPS, SCREW AIR COMPRESSORS, SHAFT COLLARS Lower BACKLASH WORM REDUCERS AND pto shaft, agricultural gearboxes SO ON.

Overview

Swift Specifics

Applicable Industries:

Production Plant

Substance:

Chrome Steel/GCr15 Stainless Metal

Feature:

EPG clearly selects as focus on the consistent improvement it has always been a precursor of new marketplaces and manufacturing methods. We commit more than 6% of our profits, and almost 4% of the EBITDA, to Investigation and Advancement. As a result, we are ready to supply to our customers distinctive manufactured-to-evaluate products.

Extended Existence High Speed

Model:

HGB or OEM

Shipping Time:

two-ten Times

Lubrication:

Oil Grease

Vibration:

V1 V2 V3 VAdhering to “Survival by High quality, Advancement by Technologies & Credit”, The organization will continually enhance item functionality to satisfy the rising consumer requirements in the arduous type of operate. four

Clearance:

C0 C2 C3 C4 C5

Dimension:

240*360*56 mm

The lemon tube is suitable for transmissible energy of sixteen-35HP, it is the chosen choice for high speeds and low torque transmission. The two-lobe lemon tube grants lower vibrations up to 2600 rpm with lengths not exceeding 800mm. AC sequence with six-lobe tubes (star)

Weight:

20.7 kg

Service:

OEM Service

Offer Capability

Source Capacity:
10000 Set/Sets per Thirty day period

Packaging & Supply

Packaging Details
two. Person deal: personal paper box+ carton+ picket pallet”>1. Industrial package deal: carton+wooden pallet

2. Individual bundle: specific paper box+ carton+ picket pallet

Port
Any China port
Direct Time
:
Quantity(Bags) 1 – 100 >100
Est. Time(times) 7 To be negotiated

On the internet Customization

Merchandise Description

Merchandise present

Software

Supply

Organization Profile

FAQ

If you have any other questions, please truly feel cost-free to make contact with us, as follows.

Q: Why did you choose us?

 

A. To give OEM service, we can personalize it for you in accordance to samples or drawings. 

B. We supply the very best quality bearings with affordable rates, reduced friction, minimal noise, and prolonged support lifestyle. 

C. With adequate stock and fast shipping, you can select our freight forwarder or your freight forwarder. 

D. The greatest service supplied by the nicely-qualified international income crew.

Q: Are you a buying and selling firm or a company? 

We are factories. Set manufacturing, trade, product sales in one.

Q: Do you accept little orders? 

a hundred% quality verify, after your bearing is common dimension bearing, even in one particular piece, we also settle for.

Q: How prolonged is your delivery time? 

Typically, if the goods are in stock, they will be 1-3 times. If the goods are out of inventory, it will be 15-20 times, depending on the quantity of the buy.

Q: Do you give samples? Is it free or additional? 

Yes, we can provide a modest number of free of charge samples. Would you head paying out the freight?

Q: What need to I do if I don’t see the variety of bearings I need to have? 

We have way too a lot of bearing collection numbers. Sometimes we can’t place them all on Alibaba. Just send out us the inquiry and we will send out you the bearing specifics.

You are welcome to get in touch with me at any time!

Contact us

Advocate Products

Best China manufacturer & factory china  in Santiago Chile  supplier 6148 Long life deep groove ball bearing 6144 6148 6156 6160 6164 With high quality best price

Best China manufacturer & factory china  in Santiago Chile  supplier 6148 Long life deep groove ball bearing 6144 6148 6156 6160 6164 With high quality best price

Best China manufacturer & factory china  in Santiago Chile  supplier 6148 Long life deep groove ball bearing 6144 6148 6156 6160 6164 With high quality best price

Best China manufacturer & factory china  in Santiago Chile  supplier 6148 Long life deep groove ball bearing 6144 6148 6156 6160 6164 With high quality best price

Best China manufacturer & factory china  in Santiago Chile  supplier 6148 Long life deep groove ball bearing 6144 6148 6156 6160 6164 With high quality best price

Best China manufacturer & factory china  in Santiago Chile  supplier 6148 Long life deep groove ball bearing 6144 6148 6156 6160 6164 With high quality best price

Best China manufacturer & factory china  in Santiago Chile  supplier 6148 Long life deep groove ball bearing 6144 6148 6156 6160 6164 With high quality best price

Best China manufacturer & factory china supplier Chinese manufacturers pillow block ball bearing bracket UCF205 ucf212 bearing With high quality best price

Best China manufacturer & factory china supplier Chinese manufacturers pillow block ball bearing bracket UCF205 ucf212 bearing With high quality best price

There is a technical center of province level, EPG academician working station, experiment station for EPG post doctors, and national 863 program set up in EPG group. With these platforms and strong technical ability, the more than 400 technicians have developed all variety of special high precise and high strength products, conducted mold programs for key components in the car and national industry revitalizing program, resulting more than 5000 developed over, among which 33 items are autonomous patent technology with 4 patent approved .

Overview

Quick Details

Applicable Industries:

Building Material Shops, Manufacturing Plant, farms, Construction works , Energy & Mining, Food & Beverage Shops

certification:

ISO9001

Material:

Chrome Steel GCR15

Feature:

High Precision

Supply Ability

Supply Ability:
500000 Piece/Pieces per Month

Packaging & Delivery

Packaging Details
industirl package
Port
Shanghai

Online Customization

HangZhou Ever-Power transmission Co. Ltd. One of branch of Ever-Power Group – the biggest China transmisssion supplier. With 1200 worker and precision equipment, we produce high quality products to USA and EU and other areas.china supplier Chinese manufacturers pillow block ball bearing bracket UCF205 ucf212 bearing

Chinese manufacturers pillow block ball bearing bracket UCF205 ucf212 bearing

china supplier Chinese manufacturers pillow block ball bearing bracket UCF205 ucf212 bearing

 

Product parameter

 

china supplier Chinese manufacturers pillow block ball bearing bracket UCF205 ucf212 bearing 

Application: Splitting machine, towline, soil tillage equipment, stainless steel reactor, etching machine, low temperature freezers, forklifts, construction materials, plastic welding machine, rubber cutting machines, weaving machines, rolling mills, radial drilling machine, feeding machine, pneumatic mixer, crushing equipment, leak-free pumps, red version of the machine, etc.

 

                                   Housing
Insert
P F
FU
FL
FLU
T
K
FC C PH PA FB FA HA
Set Screw UC200 UCP200 UCF200 UCFL200 UCT200 UCFC200 UCC200 UCPH200 UCPA200 UCFB200 UCFA200 UCHA200
UC300 UCP300 UCF300 UCFL300 UCT300 UCFC300 UCC300 UCPH300 UCPA300 UCFB300 UCFA300 UCHA300
SB200 SBP200 SBF200 SBFL200 SBT200 SBFC200 SBC200 SBPH200 SBPA200 SBFB200 SBFA200 SBHA200
Eccentric
Collar
HC200 HCP200 UCF200
UCFU200
UCFL200
UCFLU200
HCT200 HCFC200 HCC200 HCPH200 HCPA200 HCFB200 HCFA200 HCHA200
HC300 HCP300 HCF300 HCFL300 HCT300 HCFC300 HCC300 HCPH300 HCPA300 HCFB300 HCFA300 HCHA300
SA200 SAP200 SAF200 SAFL200 SAT200 SAFC200 SAC200 SAPH200 SAPA200 SAFB200 SAFA200 SAHA200
Adapter
sleeve
UK200Adding a second engine simply is not practical, which makes power take off (PTO) a valuable element in providing power to secondary functions. To recognize their value requires a better understanding of these systems, their various types, and their various applications. UKP200 UKF200 UKFL200 UKT200 UKFC200 UKC200 UKPH200 UKPA200 UKFB200 UKFA200 UKHA200
UK300 UKP300 UKF300 UKFL300 UKT300 UKFC300 UKC300 UKPH300 UKPA300 UKFB300 UKFA300 UKHA300

Please consult us for any bearings unlisted here.

 

Product show

china supplier Chinese manufacturers pillow block ball bearing bracket UCF205 ucf212 bearingchina supplier Chinese manufacturers pillow block ball bearing bracket UCF205 ucf212 bearingchina supplier Chinese manufacturers pillow block ball bearing bracket UCF205 ucf212 bearing 

Related bearing

china supplier Chinese manufacturers pillow block ball bearing bracket UCF205 ucf212 bearing 

More product

china supplier Chinese manufacturers pillow block ball bearing bracket UCF205 ucf212 bearing

Company Profile

china supplier Chinese manufacturers pillow block ball bearing bracket UCF205 ucf212 bearing

Founded in May 1979, the year when China began its open policy, we are a stated owned comprehensive enterprise combining “industry & trading, technology & trading”. In 2002, our company changed from state-owned company to private owned company. Backed up by strong economic power, advanced facilities & technology, and huge production capability of many factories, Xinguang has been developing rapidly in business since its foundation; establish long- term and friendly relationship with numerous customers from most areas of the world. Now, our employees are more than 60, in which half of them are engineers. Probably what makes us differAccudrive Servo Gearheads Servo drives from EPG Drive benefit from the expertise and innovation of our more traditional brands. Available in both right angle and inline configurations, coupled with the availability of multiple precision levels, you are sure to find the right product for your application.EPG Drive Accudrive Servo Gearheadent from other trading companies is that we have a unique staff of both businessmen and experienced mechanical engineers, who have been working in the industry for years. This feature of us acts an essential role in quality management, cost control, and service performance.china supplier Chinese manufacturers pillow block ball bearing bracket UCF205 ucf212 bearingchina supplier Chinese manufacturers pillow block ball bearing bracket UCF205 ucf212 bearing 

certificate

china supplier Chinese manufacturers pillow block ball bearing bracket UCF205 ucf212 bearing 

EPG is willing to cooperate sincerely and develop commonly with friends!

Best China manufacturer & factory china supplier Chinese manufacturers pillow block ball bearing bracket UCF205 ucf212 bearing With high quality best price

Best China manufacturer & factory china supplier Chinese manufacturers pillow block ball bearing bracket UCF205 ucf212 bearing With high quality best price

Best China manufacturer & factory china supplier Chinese manufacturers pillow block ball bearing bracket UCF205 ucf212 bearing With high quality best price

Linear China motion ball bearing – Supplier Manufacturer wholesaler Factory

Linear  China motion ball bearing - Supplier Manufacturer wholesaler Factory

For much more data.: Cell/Whatpp: +8613083988828

High quality and credit history are the bases that make a corporation alive. a specialized supplier of a full variety of chains, sprockets, gears, gear racks, V-belts, couplings and reducers, pto shaft, agricultural gearboxes….Underneath the guidance of managerial perception of “Serving agriculture, scoring a success through high quality of items and honesty in company”, our merchandise have been dependable by customers and have gained a more substantial share of industry.

Overview

Swift Details

Relevant Industries:

Producing Plant, Equipment Mend Shops, Meals & Beverage Manufacturing facility

Location of Origin:Zhejiang, China
Manufacturer Name:

OEM

Substance:

steel

Product’s title:

linear bearing

Area remedy:

Blank

Dimensions:

Custom-made Dimension

Certification:

ISO9001

Offer Potential

Provide Ability:
100000 Piece/Parts for every Week

Packaging & Supply

Packaging Details
regular export bundle,but you can get in touch with with us to talk about.
Port
Chinaport
Lead Time
:
Quantity(Parts) one – ten thousand >10000
Est. Time(times) 30 To be negotiated

Online Customization

Hangzhou Ever-Electrical power Transmission Co., Ltd. (Member of Ever-Power Group ) is a expert in making all types of mechanical transmission and hydraulic transmission like: planetary gearboxes, worm gearboxes, in-line helical gear pace gearboxes, parallel shaft helical gear gearboxes, helical bevel gearboxes, helical worm gear gearboxes, agricultural gearboxes, tractor gearboxes, auto gearboxes, PTO shafts, particular gearbox & associated equipment elements and other relevant merchandise, hydraulic cylinder, gear pumps and so on. In addition, we can produce customized variators, geared motors, electrical motors and other hydraulic items according to customers’ drawings. Our product sales benefit in yr 2007 was above Euro fifty Million. We personnel over 1500 workers, and have CNC turning machines and CNC operate centers. For far more information, please verify out our machine lists.

Linear Movement Bearing

 

EPG – a single of the largest transmission manufacturing facility in China, major products: worm geared motors, agricultrual gearbox, planetary equipment push, helical,screw, beve gears and spare parts and agricultural elements manunfacuter in ChinaFor a lot more details.: Cellular/Whatpp: +8613083988828

Linear  China motion ball bearing - Supplier Manufacturer wholesaler Factory